PESAWAT TERBANG

Kenapa Pesawat Bisa Terbang?
Pesawat terbang adalah mesin atau kendaraan apapun yang mampu terbang di atmosfer. Prinsip-prinsip terbangnya menggunakan hukum fisika yakni memanfaatkan hukum bernoulli di udara dengan memanfaatkan arus laminiar sayap yang dihasilkan akibat daya dorong mesin pesawat. Sebagian besar pesawat komersial saat ini menggunakan mesin turbofan. Turbofan berasal dari dua kata, yakni turbin dan fan. Komponan fan merupakan pembeda antara mesin ini dengan turbojet. Pada mesin turbojet, udara luar dikompresi oleh kompresor hingga mencapai tekanan tinggi. Selanjutnya udara bertekanan tinggi tersebut masuk ke dalam ruang bakar untuk dicampurkan dengan bahan bakar (avtur).
Pembakaran udara bahan bakar tersebut akan meningkatkan temperatur dan tekanan fluida kerja. Fluida bertekanan tinggi ini selanjutnya dilewatkan melalui turbin dan keluar pada nosel dengan kecepatan sangat tinggi. Perbedaan kecepatan udara masuk dan fluida keluar dari mesin mencitpakan gaya dorong T (Hukum III Newton: Aksi dan Reaksi). Gaya dorong T ini dimanfaatkan untuk bergerak dalam arah horizontal dan sebagian diubah oleh sayap pesawat menjadi gaya angkat L.
Fan pada mesin turbofan berfungsi memberikan tambahan laju udara yang memasuki mesin melalui bypass air. Udara segar ini akan bertemu dengan campuran udara bahan bakar yang telah terbakar di ujung luar mesin. Salah satu keuntungan penggunaan turbofan adalah dia mampu meredam kebisingan suara pada turbojet. Namun karena turbofan memiliki susunan komponen yang relatif kompleks, maka mesin jenis ini sangat rentan terhadap gangguan FOD (Foreign Object Damage) dan pembentukan es di dalam mesin. Masuknya FOD (seperti burung) ke dalam mesin bisa menyebabkan kejadian fatal pada pesawat.
Pesawat terbang memiliki kemampuan bergerak dalam tiga sumbu, yakni pitch, roll, dan yaw. Gerak naik turunnya hidung pesawat dikontrol oleh elevator, gerak naik turunnya sayap pesawat dikontrol oleh aileron, sedangkan gerak berbelok dalam bidang horizontal dikontrol oleh rudder yang berada di sirip (fin) pesawat. Selain itu, dibagian belakang sayap juga terdapat flap yang berfungsi membantu meningkatkan gaya angkat pada saat take off maupun mengurangi gaya angkat pada saat landing (air brake). Pada saat menjelajah (cruise) flap ini akan masuk ke dalam sayap untuk mengurangi gaya hambat D pesawat..
Gaya-Gaya Apa Saja yang Bekerja pada Pesawat Terbang dan Helikopter?
Ada beberapa macam gaya yang bekerja pada benda benda yang terbang di udara. Namun hingga saat ini, setidaknya ada 3 penjelasan yang diterima untuk fenomena munculnya gaya angkat pada sayap: prinsip Bernoulli, Hukum III Newton, dan efek Coanda. Sayap pesawat memiliki kontur potongan melintang yang unik: airfoil. Pada airfoil, permukaan atas sedikit melengkung membentuk kurva cembung, sedangkan permukaan bawah relatif datar. Bila sekelompok udara mengenai kontur airfoil ini, maka ada kemungkinan bahwa udara bagian atas akan memiliki kecepatan lebih tinggi dari bagian bawah. Hal ini disebabkan karena udara bagian atas harus melewati jarak yang lebih panjang (permukaan atas airfoil adalah cembung) dibandingkan udara bagian bawah.
1. Prinsip Bernoulli menyatakan bahwa semakin tinggi kecepatan fluida (untuk ketinggian yang relatif sama), maka tekanannya akan mengecil. Dengan demikian akan terjadi perbedaan tekanan antara udara bagian bawah dan atas sayap: hal inilah yang mencipakan gaya angkat L. Penjelasan dengan prinsip Bernoulli ini masih menuai pro kontra; namun penjelasan ini pulalah yang digunakan Boeing untuk menjelaskan prinsip gaya angkat.
2. Hukum III Newton menekankan pada prinsip perubahan momentum manakala udara dibelokkan oleh bagian bawah sayap pesawat. Dari prinsip aksi ?reaksi, muncul gaya pada bagian bawah sayap yang besarnya sama dengan gaya yang diberikan sayap untuk membelokkan udara. Sedangkan penjelasan menggunakan efek Coanda menekankan pada beloknya kontur udara yang mengalir di bagian atas sayap. Bagian atas sayap pesawat yang cembung memaksa udara untuk mengikuti kontur tersebut. Pembelokan kontur udara tersebut dimungkinkan karena adanya daerah tekanan rendah pada bagian atas sayap pesawat (atau dengan penjelasan lain: pembelokan kontur udara tersebut menciptakan daerah tekanan rendah). Perbedaan tekanan tersebut menciptakan perbedaan gaya yang menimbulkan gaya angkat L. Meski belum ada konsensus resmi mengenai mekanisme yang paling akurat untuk menjelaskan munculnya fenomena gaya angkat, yang jelas sayap pesawat berhasil mengubah sebagian gaya dorong T mesin menjadi gaya angkat L. Gaya-gaya aerodinamika ini meliputi gaya angkat (lift), gaya dorong (thrust), gaya berat (weight), dan gaya hambat udara (drag). Gaya-gaya inilah yang mempengaruhi profil terbang semua benda-benda di udara, mulai dari burung-burung yang bisa terbang mulus secara alami sampai pesawat terbang yang paling besar sekalipun.
Namun hal mendasar yang menyebabkan pesawat itu bisa mengudara adalah lebih kepada karena gaya angkat yang lebih tunduk kepada hukum Newton ketiga, yang secara sederhana berbunyi : SETIAP AKSI (daya) AKAN MENDAPAT REAKSI YANG BERLAWANAN ARAH DAN SAMA BESAR.
Gaya hambat udara (drag) merupakan gaya yang disebabkan oleh molekul-molekul dan partikel-partikel di udara. Gaya ini dialami oleh benda yang bergerak di udara. Pada benda yang diam gaya hambat udara nol. Ketika benda mulai bergerak, gaya hambat udara ini mulai muncul yang arahnya berlawanan dengan arah gerak, bersifat menghambat gerakan (itu sebabnya gaya ini disebut gaya hambat udara). Semakin cepat benda bergerak semakin besar gaya hambat udara ini. Agar benda bisa terus bergerak maju saat terbang, diperlukan gaya yang bisa mengatasi hambatan udara tersebut, yaitu gaya dorong (thrust) yang dihasilkan oleh mesin. Supaya kita tidak perlu menghasilkan thrust yang terlalu besar (bisa-bisa jadi tidak ekonomis) kita harus mencari cara untuk mengurangi drag. Salah satu caranya adalah dengan menggunakan desain yang streamline (ramping).
Supaya bisa terbang, kita perlu gaya yang bisa mengatasi gaya berat akibat tarikan gravitasi bumi. Gaya ke atas (lift) ini harus bisa melawan tarikan gravitasi bumi sehingga benda bisa terangkat dan mempertahankan posisinya di angkasa. Lalu bagaimana kita bisa mengatasi gravitasi ini? Ini saatnya memanfaatkan bantuan dari fisikawan-fisikawan legendaris: Isaac Newton, Bernoulli, dan Coanda
Isaac Newton yang terkenal dengan ketiga persamaan geraknya menyumbangkan hukum III Newton tentang Aksi-Reaksi. Sayap pesawat merupakan bagian terpenting dalam menghasilkan lift. Partikel-partikel yang menabrak ini lalu dipantulkan ke bawah (ke arah tanah). Udara yang menghujani tanah ini merupakan gaya AKSI. Nah, ini baru aksi yang disebabkan proses yang terjadi di bagian bawah sayap. Di bagian atas sayap, ada proses lain yang juga menghasilkan aksi. Di sini Bernoulli dan Coanda ‘bekerja sama’. Sewaktu udara akan mengalir di bagian atas sayap, tekanannya sebesar P1. Ketika udara melewati bagian lengkung pesawat, tekanan udara di daerah itu turun menjadi P2. Menurut Coanda, udara yang melewati permukaan lengkung akan mengalir sepanjang permukaan itu (dikenal sebagai Efek Coanda). Udara yang melewati bagian atas sayap ini mirip udara yang bergerak sepanjang botol. Udara ini akan mengalir sepanjang permukaan atas sayap hingga mencapai ujung bawah sayap. Di ujung bawah sayap itu partikel-partikel udara bergerombol dan bertambah terus sampai akhirnya kelebihan berat dan berjatuhan (downwash). Siraman udara atau downwash ini juga merupakan komponen gaya AKSI. Tanah yang menerima gaya aksi ini pasti langsung memberikan gaya REAKSI yang besarnya sama dengan gaya aksi tetapi berlawanan arah. Karena gaya aksinya menuju tanah (ke arah bawah), berarti gaya reaksinya ke arah atas. Gaya reaksi ini memberikan gaya angkat (lift) yang bisa mengangkat pesawat dan mengalahkan gaya berat akibat tarikan gravitasi bumi. Sumber gaya angkat (lift) yang lain adalah perubahan tekanan udara di P2.
Dari beberapa hal, bagusnya kinerja penerbang dalam sebuah penerbangan bergantung pada kemampuan untuk merencanakan dan berkordinasi dengan penggunaan tenaga (power) dan kendali pesawat untuk mengubah gaya dari gaya dorong (thrust), gaya tahan (drag), gaya angkat (lift) dan berat pesawat (weight). Keseimbangan dari gaya-gaya tersebutlah yang harus dikendalikan oleh penerbang. Makin baik pemahaman dari gaya-gaya dan cara mengendalikannya, makin baik pula ketrampilan seorang penerbang.
Berikut ini hal-hal yang mendefinisikan gaya-gaya tersebut dalam sebuah penerbangan yang lurus dan datar, tidak berakselerasi (stright and level, unaccelerated).
Thrust, adalah gaya dorong, yang dihasilkan oleh mesin (powerplant)/baling-baling. Gaya ini kebalikan dari gaya tahan (drag). Sebagai aturan umum, thrust beraksi paralel dengan sumbu longitudinal. Tapi sebenarnya hal ini tidak selalu terjadi, seperti yang akan dijelaskan kemudian.
Drag, adalah gaya ke belakang, menarik mundur, dan disebabkan oleh gangguan aliran udara oleh sayap, fuselage, dan objek-objek lain. Drag kebalikan dari thrust, dan beraksi kebelakang paralel dengan arah angin relatif (relative wind).
Weight, gaya berat adalah kombinasi berat dari muatan pesawat itu sendiri, awak pesawat, bahan bakar, dan kargo atau bagasi. Weight menarik pesawat ke bawah karena gaya gravitasi. Weight melawan lift (gaya angkat) dan beraksi secara vertikal ke bawah melalui center of gravity dari pesawat.
Lift, (gaya angkat) melawan gaya dari weight, dan dihasilkan oleh efek dinamis dari udara yang beraksi di sayap, dan beraksi tegak lurus pada arah penerbangan melalui center of lift dari sayap.
Pada penerbangan yang stabil, jumlah dari gaya yang saling berlawanan adalah sama dengan nol. Tidak akan ada ketidakseimbangan dalam penerbangan yang stabil dan lurus (Hukum ketiga Newton). Hal ini berlaku pada penerbangan yang mendatar atau mendaki atau menurun.
Hal ini tidak sama dengan mengatakan seluruh keempat gaya adalah sama. Secara sederhana semua gaya yang berlawanan adalah sama besar dan membatalkan efek dari masing-masing gaya. Seringkali hubungan antara keempat gaya ini diterangkan dengan salah atau digambarkan dengan sedemikian rupa sehingga menjadi kurang jelas.
Perhatikan gambar berikut sebagai contoh. Pada ilustrasi di bagian atas, nilai dari semua vektor gaya terlihat sama. Keterangan biasa pada umumnya akan mengatakan (tanpa menyatakan bahwa thrust dan drag tidak sama nilainya dengan weight dan lift) bahwa thrust sama dengan drag dan lift sama dengan weight seperti yang diperlihatkan di ilustrasi di bawah.
Pada dasarnya ini adalah pernyataan yang benar yang harus benar-benar dimengerti atau akan memberi pengertian yang menyesatkan. Harus dimengerti bahwa dalam penerbangan yang lurus dan mendatar (straight and level), tidak berakselerasi adalah benar gaya lift/weight yang saling berlawanan adalah sama, tapi kedua gaya itu juga lebih besar dari gaya berlawanan thrust/drag yang juga sama nilainya diantara keduanya, bukan dibandingkan dengan lift/weight. Untuk kebenarannya, harus dikatakan bahwa dalam keadaan stabil (steady) jumlah gaya ke atas (tidak hanya lift) sama dengan jumlah gaya ke bawah (tidak hanya weight), jumlah gaya dorong (tidak hanya thrust) sama dengan jumlah gaya ke belakang (tidak hanya drag).
Perbaikan dari rumus lama yang mengatakan “thrust sama dengan drag dan lift sama dengan weight” ini juga mempertimbangkan fakta bahwa dalam climb/terbang mendaki, sebagian gaya thrust juga diarahkan ke atas, beraksi seperti gaya lift, dan sebagian gaya weight, karena arahnya yang ke belakang juga beraksi sebagai drag. Pada waktu melayang turun (glide) sebagian vektor gaya weight diarahkan ke depan, beraksi seperti gaya thrust. Dengan kata lain, jika kapan pun arah pesawat tidak horisontal maka lift, weight, thrust dan drag akan terbagi menjadi dua komponen.